Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
1.
Sci Rep ; 14(1): 10479, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714793

RESUMO

Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode-tissue (E-T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements.


Assuntos
Colo , Íleo , Mucosa Intestinal , Serotonina , Serotonina/metabolismo , Animais , Camundongos , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Colo/metabolismo , Células Enterocromafins/metabolismo , Microeletrodos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Masculino , Técnicas Eletroquímicas/métodos , Camundongos Endogâmicos C57BL
2.
EMBO Rep ; 25(1): 304-333, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177905

RESUMO

The gastrointestinal epithelium constitutes a chemosensory system for microbiota-derived metabolites such as short-chain fatty acids (SCFA). Here, we investigate the spatial distribution of Olfr78, one of the SCFA receptors, in the mouse intestine and study the transcriptome of colon enteroendocrine cells expressing Olfr78. The receptor is predominantly detected in the enterochromaffin and L subtypes in the proximal and distal colon, respectively. Using the Olfr78-GFP and VilCre/Olfr78flox transgenic mouse lines, we show that loss of epithelial Olfr78 results in impaired enterochromaffin cell differentiation, blocking cells in an undefined secretory lineage state. This is accompanied by a reduced defense response to bacteria in colon crypts and slight dysbiosis. Using organoid cultures, we further show that maintenance of enterochromaffin cells involves activation of the Olfr78 receptor via the SCFA ligand acetate. Taken together, our work provides evidence that Olfr78 contributes to colon homeostasis by promoting enterochromaffin cell differentiation.


Assuntos
Células Enterocromafins , Receptores Odorantes , Camundongos , Animais , Células Enterocromafins/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Diferenciação Celular , Células Enteroendócrinas/metabolismo , Colo
3.
Front Endocrinol (Lausanne) ; 14: 1193556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027192

RESUMO

In the gastrointestinal tract, serotonin (5-hydroxytryptamine, 5-HT) is an important monoamine that regulates intestinal dynamics. QGP-1 cells are human-derived enterochromaffin cells that secrete 5-HT and functionally express Piezo ion channels associated with cellular mechanosensation. Piezo ion channels can be blocked by Grammostola spatulata mechanotoxin 4 (GsMTx4), a spider venom peptide that inhibits cationic mechanosensitive channels. The primary aim of this study was to explore the effects of GsMTx4 on 5-HT secretion in QGP-1 cells in vitro. We investigated the transcript and protein levels of the Piezo1/2 ion channel, tryptophan hydroxylase 1 (TPH1), and mitogen-activated protein kinase signaling pathways. In addition, we observed that GsMTx4 affected mouse intestinal motility in vivo. Furthermore, GsMTx4 blocked the response of QGP-1 cells to ultrasound, a mechanical stimulus.The prolonged presence of GsMTx4 increased the 5-HT levels in the QGP-1 cell culture system, whereas Piezo1/2 expression decreased, and TPH1 expression increased. This effect was accompanied by the increased phosphorylation of the p38 protein. GsMTx4 increased the entire intestinal passage time of carmine without altering intestinal inflammation. Taken together, inhibition of Piezo1/2 can mediate an increase in 5-HT, which is associated with TPH1, a key enzyme for 5-HT synthesis. It is also accompanied by the activation of the p38 signaling pathway. Inhibitors of Piezo1/2 can modulate 5-HT secretion and influence intestinal motility.


Assuntos
Células Enterocromafins , Canais Iônicos , Serotonina , Animais , Humanos , Camundongos , Células Enterocromafins/metabolismo , Intestinos/metabolismo , Intestinos/fisiologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Serotonina/farmacologia , Serotonina/metabolismo , Transdução de Sinais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia
4.
J Biol Chem ; 299(12): 105356, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863265

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) feature large extracellular regions with modular domains that often resemble protein classes of various function. The pentraxin (PTX) domain, which is predicted by sequence homology within the extracellular region of four different aGPCR members, is well known to form pentamers and other oligomers. Oligomerization of GPCRs is frequently reported and mainly driven by interactions of the seven-transmembrane region and N or C termini. While the functional importance of dimers is well-established for some class C GPCRs, relatively little is known about aGPCR multimerization. Here, we showcase the example of ADGRG4, an orphan aGPCR that possesses a PTX-like domain at its very N-terminal tip, followed by an extremely long stalk containing serine-threonine repeats. Using X-ray crystallography and biophysical methods, we determined the structure of this unusual PTX-like domain and provide experimental evidence for a homodimer equilibrium of this domain which is Ca2+-independent and driven by intermolecular contacts that differ vastly from the known soluble PTXs. The formation of this dimer seems to be conserved in mammalian ADGRG4 indicating functional relevance. Our data alongside of theoretical considerations lead to the hypothesis that ADGRG4 acts as an in vivo sensor for shear forces in enterochromaffin and Paneth cells of the small intestine.


Assuntos
Fenômenos Biofísicos , Domínios Proteicos , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Células Enterocromafins/metabolismo , Celulas de Paneth/metabolismo , Cristalografia por Raios X , Fenômenos Biofísicos/fisiologia , Modelos Moleculares , Estrutura Terciária de Proteína , Dobramento de Proteína , Alinhamento de Sequência , Sequência de Aminoácidos , Células HEK293 , Humanos
5.
Biosci Rep ; 43(4)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36947541

RESUMO

RXFP4 is a G protein-coupled receptor (GPCR) in the relaxin family. It has recently been recognised that this receptor and its cognate ligand INSL5 may have a role in the regulation of food intake, gut motility, and other functions relevant to metabolic health and disease. Recent data from reporter-mice showed co-location of Rxfp4 and serotonin (5-HT) in the lower gut. We used human single-cell RNA sequence data (scRNASeq) to show that RXFP4 is in a subset of gut enterochromaffin cells that produce 5-HT in humans. We also used RNAScope to show co-location of Rxfp4 mRNA and 5-HT in mouse colon, confirming prior findings. To understand whether RXFP4 might regulate serotonin production, we developed a cell model using Colo320, a human gut-derived immortalised cell line that produces and releases serotonin. Overexpression of RXFP4 in these cells resulted in a constitutive decrease in cAMP levels in both the basal state and in cells treated with forskolin. Treatment of cells with two RXFP4 agonists, INSL5 derived peptide INSL5-A13 and small molecule compound-4, further reduced cAMP levels. This was paralleled by a reduction in expression of mRNA for TPH1, the enzyme controlling the rate limiting step in the production of serotonin. Overexpression of RXFP4 also attenuated the cAMP-induced release of serotonin from Colo320 cells. Together this demonstrates that serotonin producing enterochromaffin cells are the major site of RXFP4 expression in the gut and that RXFP4 can have inhibitory functional impacts on cAMP production as well as TPH1 expression and serotonin release.


Assuntos
Células Enterocromafins , Receptores Acoplados a Proteínas G , Serotonina , Animais , Humanos , Camundongos , Células Enterocromafins/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , RNA Mensageiro/genética , Serotonina/metabolismo
6.
Nature ; 616(7955): 137-142, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36949192

RESUMO

Gastrointestinal (GI) discomfort is a hallmark of most gut disorders and represents an important component of chronic visceral pain1. For the growing population afflicted by irritable bowel syndrome, GI hypersensitivity and pain persist long after tissue injury has resolved2. Irritable bowel syndrome also exhibits a strong sex bias, afflicting women three times more than men1. Here, we focus on enterochromaffin (EC) cells, which are rare excitable, serotonergic neuroendocrine cells in the gut epithelium3-5. EC cells detect and transduce noxious stimuli to nearby mucosal nerve endings3,6 but involvement of this signalling pathway in visceral pain and attendant sex differences has not been assessed. By enhancing or suppressing EC cell function in vivo, we show that these cells are sufficient to elicit hypersensitivity to gut distension and necessary for the sensitizing actions of isovalerate, a bacterial short-chain fatty acid associated with GI inflammation7,8. Remarkably, prolonged EC cell activation produced persistent visceral hypersensitivity, even in the absence of an instigating inflammatory episode. Furthermore, perturbing EC cell activity promoted anxiety-like behaviours which normalized after blockade of serotonergic signalling. Sex differences were noted across a range of paradigms, indicating that the EC cell-mucosal afferent circuit is tonically engaged in females. Our findings validate a critical role for EC cell-mucosal afferent signalling in acute and persistent GI pain, in addition to highlighting genetic models for studying visceral hypersensitivity and the sex bias of gut pain.


Assuntos
Ansiedade , Células Enterocromafins , Dor Visceral , Feminino , Humanos , Masculino , Ansiedade/complicações , Ansiedade/fisiopatologia , Sistema Digestório/inervação , Sistema Digestório/fisiopatologia , Células Enterocromafins/metabolismo , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/fisiopatologia , Síndrome do Intestino Irritável/psicologia , Caracteres Sexuais , Dor Visceral/complicações , Dor Visceral/fisiopatologia , Dor Visceral/psicologia , Inflamação/complicações , Inflamação/fisiopatologia , Serotonina/metabolismo , Reprodutibilidade dos Testes
7.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G177-G189, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537709

RESUMO

Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors of putative enterochromaffin (EC) cell origin. However, EC cell-derived tumorigenesis remains poorly understood. Here, we examined whether the gain of Myc and the loss of RB1 and Trp53 function in EC cells result in SI-NET using tryptophan hydroxylase 1 (TPH1) Cre-ERT2-driven RB1fl Trp53fl MycLSL (RPM) mice. TPH1-Cre-induced gain of Myc and loss of RB1 and Trp53 function resulted in endocrine or neuronal tumors in pancreas, lung, enteric neurons, and brain. Lineage tracing indicated that the cellular origin for these tumors was TPH1-expressing neuroendocrine, neuronal, or their precursor cells in these organs. However, despite that TPH1 is most highly expressed in EC cells of the small intestine, we observed no incidence of EC cell tumors. Instead, the tumor of epithelial cell origin in the intestine was exclusively nonendocrine adenocarcinoma, suggesting dedifferentiation of EC cells into intestinal stem cells (ISCs) as a cellular mechanism. Furthermore, ex vivo organoid studies indicated that loss of functions of Rb1 and Trp53 accelerated dedifferentiation of EC cells that were susceptible to apoptosis with expression of activated MycT58A, suggesting that the rare dedifferentiating cells escaping cell death went on to develop adenocarcinomas. Lineage tracing demonstrated that EC cells in the small intestine were short-lived compared with neuroendocrine or neuronal cells in other organs. In contrast, EC cell-derived ISCs were long-lasting and actively cycling and thus susceptible to transformation. These results suggest that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation, affect the fate and rate of tumorigenesis induced by genetic alterations and provide important insights into EC cell-derived tumorigenesis.NEW & NOTEWORTHY Small intestinal neuroendocrine tumors are of putative enterochromaffin (EC) cell origin and are the most common malignancy in the small intestine, followed by adenocarcinoma. However, the tumorigenesis of these tumor types remains poorly understood. The present lineage tracing studies showed that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation affect the fate and rate of tumorigenesis induced by genetic alterations toward a rare occurrence of adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Intestinais , Tumores Neuroendócrinos , Camundongos , Animais , Células Enterocromafins/metabolismo , Intestino Delgado/patologia , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Intestinais/metabolismo , Tumores Neuroendócrinos/metabolismo , Adenocarcinoma/genética
8.
Clin Exp Pharmacol Physiol ; 49(10): 1059-1071, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35652717

RESUMO

As a prerequisite for serotonin secretion, the P-STS ileal enterochromaffin cell line responds to acetylcholine (ACh) stimulation with an increase in intracellular calcium mediated by the muscarinic ACh receptor M3 (M3R). Histamine increases intracellular calcium via histamine H1 receptor (H1R) in P-STS cells and pre-incubation with histamine specifically augments the response to ACh but not to epinephrine or nicotine. We aimed to elucidate whether histamine receptors are involved in this synergism. Astonishingly, HEK-293 T cells-known to express M3R, but only a very low amount of histamine receptor messenger RNA-showed a similar enhancement of the calcium response to ACh by pre-incubation with histamine. Despite the much lower level of H1R protein detected in HEK-293 T cells as compared to P-STS cells, in both cell lines pre-treatment with H1R antagonists inhibited the synergism between histamine and ACh. No indication for an involvement of histamine H2 or H4 receptors in the synergism was found. Furthermore, pre-incubation with the cAMP-inducing compound forskolin had no influence on the intracellular calcium response to ACh. Serotonin secretion from P-STS cells was increased after challenge with ACh and histamine added simultaneously compared to ACh alone, suggesting that histamine increases ACh-induced serotonin secretion from enterochromaffin cells. In conclusion, our data suggest that histamine enhances the M3R-mediated intracellular calcium response to ACh via activation of H1R. This probably increases serotonin secretion from enterochromaffin cells and thereby affects intestinal motility in histamine intolerance, food allergies and irritable bowel syndrome.


Assuntos
Histamina , Receptores Histamínicos H1 , Acetilcolina/farmacologia , Cálcio/metabolismo , Células Enterocromafins/metabolismo , Células HEK293 , Histamina/farmacologia , Humanos , Receptores Histamínicos H1/metabolismo , Receptores Muscarínicos , Serotonina/farmacologia
9.
Cell Tissue Res ; 389(1): 1-9, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596811

RESUMO

The gastrointestinal hormone, insulin-like peptide 5 (INSL5), is found in large intestinal enteroendocrine cells (EEC). One of its functions is to stimulate nerve circuits that increase propulsive activity of the colon through its receptor, the relaxin family peptide 4 receptor (RXFP4). To investigate the mechanisms that link INSL5 to stimulation of propulsion, we have determined the localisation of cells expressing Rxfp4 in the mouse colon, using a reporter mouse to locate cells expressing the gene. The fluorescent signal indicating the location of Rxfp4 expression was in EEC, the greatest overlap of Rxfp4-dependent labelling being with cells containing 5-HT. In fact, > 90% of 5-HT cells were positive for Rxfp4 labelling. A small proportion of cells with Rxfp4-dependent labelling was 5-HT-negative, 11-15% in the distal colon and rectum, and 35% in the proximal colon. Of these, some were identified as L-cells by immunoreactivity for oxyntomodulin. Rxfp4-dependent fluorescence was also found in a sparse population of nerve endings, where it was colocalised with CGRP. We used the RXFP4 agonist, INSL5-A13, to activate the receptor and probe the role of the 5-HT cells in which it is expressed. INSL5-A13 administered by i.p. injection to conscious mice caused an increase in colorectal propulsion that was antagonised by the 5-HT3 receptor blocker, alosetron, also given i.p. We conclude that stimuli that excite INSL5-containing colonic L-cells release INSL5 that, through RXFP4, excites 5-HT release from neighbouring endocrine cells, which in turn acts on 5-HT3 receptors of enteric sensory neurons to elicit propulsive reflexes.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina , Animais , Células Enterocromafins/metabolismo , Células Enteroendócrinas/metabolismo , Intestino Grosso , Camundongos , Serotonina
10.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409109

RESUMO

The intestinal epithelium plays a key role in managing the relationship with the environment, the internal and external inputs, and their changes. One percent of the gut epithelium is represented by the enteroendocrine cells. Among the enteroendocrine cells, a group of specific cells characterized by the presence of yellow granules, the enterochromaffin cells, has been identified. These granules contain many secretion products. Studies showed that these cells are involved in gastrointestinal inflammatory conditions and hyperalgesia; their number increases in these conditions both in affected and not-affected zones of the gut. Moreover, they are involved in the preservation and modulation of the intestinal function and motility, and they sense metabolic-nutritional alterations. Sometimes, they are confused or mixed with other enteroendocrine cells, and it is difficult to define their activity. However, it is known that they change their functions during diseases; they increased in number, but their involvement is related mainly to some secretion products (serotonin, melatonin, substance P). The mechanisms linked to these alterations are not well investigated. Herein, we provide an up-to-date highlight of the main findings about these cells, from their discovery to today. We emphasized their origin, morphology, and their link with diet to better evaluate their role for preventing or treating metabolic disorders considering that these diseases are currently a public health burden.


Assuntos
Células Enterocromafins , Gastroenteropatias , Células Enterocromafins/metabolismo , Células Enteroendócrinas/metabolismo , Gastroenteropatias/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Serotonina/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 322(5): G523-G533, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35293258

RESUMO

Cross talk between the gastrointestinal tract and brain is of significant relevance for human health and disease. However, our understanding of how the gut and brain communicate has been limited by a lack of techniques to identify the precise spatial relationship between extrinsic nerve endings and their proximity to specific cell types that line the inner surface of the gastrointestinal tract. We used an in vivo anterograde tracing technique, previously developed in our laboratory, to selectively label single spinal afferent axons and their nerve endings in mouse colonic mucosa. The closest three-dimensional distances between spinal afferent nerve endings and axonal varicosities to enterochromaffin (EC) cells, which contain serotonin (5-hydroxytryptamine; 5-HT), were then measured. The mean distances (± standard deviation) between any varicosity along a spinal afferent axon or its nerve ending, and the nearest EC cell, were 5.7 ± 6.0 µm (median: 3.6 µm) and 26.9 ± 18.6 µm (median: 24.1 µm), respectively. Randomization of the spatial location of EC cells revealed similar results to this actual data. These distances are ∼200-1,000 times greater than those between pre- and postsynaptic membranes (15-25 nm) that underlie synaptic transmission in the vertebrate nervous system. Our findings suggest that colonic 5-HT-containing EC cells release substances to activate centrally projecting spinal afferent nerves likely via diffusion, as such signaling is unlikely to occur with the spatial fidelity of a synapse.NEW & NOTEWORTHY We show an absence of close physical contact between spinal afferent nerves and 5-HT-containing EC cells in mouse colonic mucosa. Similar relative distances were observed between randomized EC cells and spinal afferents compared with actual data. This spatial relationship suggests that substances released from colonic 5-HT-containing EC cells are unlikely to act via synaptic transmission to neighboring spinal afferents that relay sensory information from the gut lumen to the brain.


Assuntos
Células Enterocromafins , Serotonina , Animais , Eixo Encéfalo-Intestino , Colo/metabolismo , Células Enterocromafins/metabolismo , Camundongos , Serotonina/metabolismo
12.
Curr Opin Endocrinol Diabetes Obes ; 29(2): 177-182, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197425

RESUMO

PURPOSE OF REVIEW: To shed light on the recently uncovered diverse role of serotonin (5-hydroxytryptamine; 5-HT) in the regulation of immune functions, inflammation, metabolism, and gut-brain axis. RECENT FINDINGS: Peripheral 5-HT which accounts for approximately 95% of the total is largely synthesized in the gut by enterochromaffin cells. Enterochromaffin cells release 5-HT in response to various stimuli including microbial products. Released 5-HT influences secretomotor, sensory and immune functions as well as inflammatory processes in the gut. 5-HT released from enterochromaffin cells enters circulation and is taken up and concentrated in platelets. 5-HT released from the activated platelets interacts with different organs to alter their metabolic activity. 5-HT also serves as a link in the gut-brain axis. SUMMARY: Emerging evidence regarding the role of peripheral 5-HT in the regulation of various physiological and pathophysiological conditions opens up new targets for researchers to explore and for clinicians to treat and manage different diseases associated with the altered 5-HT signalling.


Assuntos
Eixo Encéfalo-Intestino , Serotonina , Células Enterocromafins/metabolismo , Humanos , Imunidade , Inflamação/metabolismo , Serotonina/fisiologia
13.
BMC Microbiol ; 21(1): 316, 2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34773967

RESUMO

BACKGROUND: Accumulating evidence supports the pivotal role of intestinal flora in irritable bowel syndrome (IBS). Serotonin synthesis by enterochromaffin (EC) cells is influenced by the gut microbiota and has been reported to have an interaction with IBS. The comparison between the microbiota of the caecal and colonic mucosa in IBS has rarely been studied. The aim of this study was to investigate the relationship between the gut microbiota, EC cells in caecum and descending colon, and diarrhoea-predominant IBS (IBS-D) symptoms. RESULTS: A total of 22 IBS-D patients and 22 healthy controls (HCs) were enrolled in our study. Hamilton anxiety (HAM-A) and Hamilton depression (HAM-D) grades increased significantly in IBS-D patients. In addition, the frequency of defecation in IBS-D patients was higher than that in HCs. Among the preponderant bacterial genera, the relative abundance of the Ruminococcus_torques_ group increased in IBS-D patients in caecum samples while Raoultella and Fusobacterium were less abundant. In the descending colon, the abundance of the Ruminococcus_torques_group and Dorea increased in IBS-D patients and Fusobacterium decreased. No difference was observed between the descending colon and caecum in regards to the mucosal-associated microbiota. The number of EC cells in the caecum of IBS-D patients was higher than in HCs and the expression of TPH1 was higher in IBS-D patients both in the caecum and in the descending colon both at the mRNA and protein level. Correlation analysis showed that the Ruminococcus_torques_group was positively associated with HAM-A, HAM-D, EC cell number, IBS-SSS, degree of abdominal pain, frequency of abdominal pain and frequency of defecation. The abundance of Dorea was positively associated with EC cell number, IBS-SSS, HAM-A, HAM-D and frequency of abdominal pain. CONCLUSIONS: EC cell numbers increased in IBS-D patients and the expression of TPH1 was higher than in HCs. The Ruminococcus torques group and Dorea furthermore seem like promising targets for future research into the treatment of IBS-D patients.


Assuntos
Bactérias/isolamento & purificação , Ceco/microbiologia , Diarreia/microbiologia , Células Enterocromafins/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Síndrome do Intestino Irritável/microbiologia , Serotonina/metabolismo , Adulto , Bactérias/classificação , Bactérias/genética , Estudos de Casos e Controles , Colo/microbiologia , Diarreia/metabolismo , Células Enterocromafins/microbiologia , Fezes/microbiologia , Feminino , Humanos , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/metabolismo , Masculino , Pessoa de Meia-Idade
14.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502396

RESUMO

The monoamine serotonin, 5-hydroxytryptamine (5-HT), is a remarkable molecule with conserved production in prokaryotes and eukaryotes and a wide range of functions. In the gastrointestinal tract, enterochromaffin cells are the most important source for 5-HT production. Some intestinal bacterial species are also able to produce 5-HT. Besides its role as a neurotransmitter, 5-HT acts on immune cells to regulate their activation. Several lines of evidence indicate that intestinal 5-HT signaling is altered in patients with inflammatory bowel disease. In this review, we discuss the current knowledge on the production, secretion, and signaling of 5-HT in the intestine. We present an inventory of intestinal immune and epithelial cells that respond to 5-HT and describe the effects of these signaling processes on intestinal homeostasis. Further, we detail the mechanisms by which 5-HT could affect inflammatory bowel disease course and describe the effects of interventions that target intestinal 5-HT signaling.


Assuntos
Trato Gastrointestinal/metabolismo , Serotonina/metabolismo , Serotonina/fisiologia , Animais , Colite , Células Enterocromafins/metabolismo , Células Enterocromafins/fisiologia , Células Epiteliais/metabolismo , Trato Gastrointestinal/fisiologia , Homeostase/fisiologia , Humanos , Inflamação , Doenças Inflamatórias Intestinais , Mucosa Intestinal/metabolismo , Intestinos , Transdução de Sinais/efeitos dos fármacos
15.
Int J Mol Sci ; 22(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34360695

RESUMO

Serotonin, also known as 5-hydroxytryptamine (5-HT), is a metabolite of tryptophan and is reported to modulate the development and neurogenesis of the enteric nervous system, gut motility, secretion, inflammation, sensation, and epithelial development. Approximately 95% of 5-HT in the body is synthesized and secreted by enterochromaffin (EC) cells, the most common type of neuroendocrine cells in the gastrointestinal (GI) tract, through sensing signals from the intestinal lumen and the circulatory system. Gut microbiota, nutrients, and hormones are the main factors that play a vital role in regulating 5-HT secretion by EC cells. Apart from being an important neurotransmitter and a paracrine signaling molecule in the gut, gut-derived 5-HT was also shown to exert other biological functions (in autism and depression) far beyond the gut. Moreover, studies conducted on the regulation of 5-HT in the immune system demonstrated that 5-HT exerts anti-inflammatory and proinflammatory effects on the gut by binding to different receptors under intestinal inflammatory conditions. Understanding the regulatory mechanisms through which 5-HT participates in cell metabolism and physiology can provide potential therapeutic strategies for treating intestinal diseases. Herein, we review recent evidence to recapitulate the mechanisms of synthesis, secretion, regulation, and biofunction of 5-HT to improve the nutrition and health of humans.


Assuntos
Mucosa Intestinal/metabolismo , Serotonina/metabolismo , Células Enterocromafins/metabolismo , Microbioma Gastrointestinal , Humanos , Intestinos
16.
Life Sci ; 283: 119872, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352261

RESUMO

The interaction of Toxoplasma gondii with the gastrointestinal tract of its host is highly regulated. Once ingested, the parasite crosses the epithelium without altering the permeability of the intestinal barrier. Nevertheless, many studies report alterations ranging from structural to functional damage in cells and tissues that make up the wall of the small and large intestine. Although the immune response to the parasite has been extensively studied, the role of serotonin (5-HT) in toxoplasmosis is poorly understood. Here we investigate the distribution of cells expressing 5-HT and its effects on cells and tissues of the jejunal wall of rats after 2, 3, or 7 days of T. gondii infection. KEY RESULTS: Our results show that transposition of the jejunal epithelium by T. gondii leads to ruptures in the basement membrane and activation of the immune system, as confirmed by the decrease in laminin immunostaining and the increase in the number of mast cells, respectively. CONCLUSIONS AND INFERENCES: We showed an increase in the number of enterochromaffin cells and mast cells expressing 5-HT in the jejunal wall. We also observed that the percentage of serotonergic mast cells increased in the total population. Thus, we can suggest that oral infection by T. gondii oocysts preferentially activates non-neuronal cells expressing 5-HT. Together, these results may explain both the changes in the extracellular matrix and the morphology of the enteric ganglia.


Assuntos
Células Enterocromafins , Jejuno , Oocistos/metabolismo , Serotonina/biossíntese , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Doença Aguda , Animais , Células Enterocromafins/metabolismo , Células Enterocromafins/parasitologia , Jejuno/metabolismo , Jejuno/parasitologia , Masculino , Ratos , Ratos Wistar
17.
Eur J Pharmacol ; 906: 174220, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34081905

RESUMO

Schisandrin C (Sch C) is one of the main components of Schisandra chinensis (Schisandra). Since the olden times, Schisandra has been used as a traditional herbal medicine in Asia. Recent studies have shown that Schisandra is effective against irritable bowel syndrome (IBS) in an animal model and affects IBS through the 5-HT3A pathway in the IBS rat model. However, there lacks fundamental research on the interaction of specific components of Schisandra with the 5-HT3A receptor for the treatment of IBS. We hypothesized that a component of Schisandra binds to the 5-HT3A receptor and identified Sch C via a screening work using two electrode-voltage clamps (TEVC). Thus, we aimed to elucidate the neuropharmacological actions between Sch C and the 5-HT3A receptor at molecular and cellular levels. Co-treatment of Sch C with 5-HT inhibited I5-HT in a reversible, concentrate-dependent, like-competition, and voltage-independent manner, and IC50 values of Sch C. Besides, the main binding positions of Sch C were identified through 3D modeling and point mutation were V225A and V288Y on 5-HT3A receptor. Thus, we suggest the potential of Sch C in treating IBS in a manner that suppresses excessive neuronal serotonin signaling in the synapse of sensory neurons and enterochromaffin (EC) cells. In conclusion, the results demonstrate the mechanism of interaction between Sch C and 5-HT3A receptor and reveal Sch C as a novel antagonist.


Assuntos
Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Animais , Ciclo-Octanos/farmacologia , Ciclo-Octanos/uso terapêutico , Células Enterocromafins/efeitos dos fármacos , Células Enterocromafins/metabolismo , Humanos , Concentração Inibidora 50 , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/inervação , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/patologia , Lignanas/uso terapêutico , Simulação de Acoplamento Molecular , Oócitos , Técnicas de Patch-Clamp , Compostos Policíclicos/uso terapêutico , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/uso terapêutico , Xenopus laevis
18.
J Virol ; 95(15): e0075121, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980599

RESUMO

Rotavirus infection is highly prevalent in children, and the most severe effects are diarrhea and vomiting. It is well accepted that the enteric nervous system (ENS) is activated and plays an important role, but knowledge of how rotavirus activates nerves within ENS and to the vomiting center is lacking. Serotonin is released during rotavirus infection, and antagonists to the serotonin receptor subtype 3 (5-HT3 receptor) can attenuate rotavirus-induced diarrhea. In this study, we used a 5-HT3 receptor knockout (KO) mouse model to investigate the role of this receptor in rotavirus-induced diarrhea, motility, electrolyte secretion, inflammatory response, and vomiting reflex. The number of diarrhea days (P = 0.03) and the number of mice with diarrhea were lower in infected 5-HT3 receptor KO than wild-type pups. In vivo investigation of fluorescein isothiocyanate (FITC)-dextran transit time showed that intestinal motility was lower in the infected 5-HT3 receptor KO compared to wild-type mice (P = 0.0023). Ex vivo Ussing chamber measurements of potential difference across the intestinal epithelia showed no significant difference in electrolyte secretion between the two groups. Immediate early gene cFos expression level showed no difference in activation of the vomiting center in the brain. Cytokine analysis of the intestine indicated a low effect of inflammatory response in rotavirus-infected mice lacking the 5-HT3 receptor. Our findings indicate that the 5-HT3 receptor is involved in rotavirus-induced diarrhea via its effect on intestinal motility and that the vagus nerve signaling to the vomiting center occurs also in the absence of the 5-HT3 receptor. IMPORTANCE The mechanisms underlying rotavirus-induced diarrhea and vomiting are not yet fully understood. To better understand rotavirus pathophysiology, characterization of nerve signaling within the ENS and through vagal efferent nerves to the brain, which have been shown to be of great importance to the disease, is necessary. Serotonin (5-HT), a mediator of both diarrhea and vomiting, has been shown to be released from enterochromaffin cells in response to rotavirus infection and the rotavirus enterotoxin NSP4. Here, we investigated the role of the serotonin receptor 5-HT3, which is known to be involved in the nerve signals that regulate gut motility, intestinal secretion, and signal transduction through the vagus nerve to the brain. We show that the 5-HT3 receptor is involved in rotavirus-induced diarrhea by promoting intestinal motility. The findings shed light on new treatment possibilities for rotavirus diarrhea.


Assuntos
Diarreia/fisiopatologia , Sistema Nervoso Entérico/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Receptores 5-HT3 de Serotonina/metabolismo , Infecções por Rotavirus/patologia , Vômito/fisiopatologia , Animais , Células Enterocromafins/metabolismo , Motilidade Gastrointestinal/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores 5-HT3 de Serotonina/genética , Rotavirus/fisiologia , Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia
19.
Food Funct ; 12(8): 3597-3610, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33900345

RESUMO

Akkermansia muciniphila is a probiotic inhabiting host intestinal mucus layers and displays evident easing or therapeutic effects on host enteritis and metabolic disorders such as obesity and diabetes. The outer membrane protein Amuc_1100 of A. muciniphila is likely to play a crucial role during the interaction with the host. 5-HT is a neurotransmitter and a key signal molecule regulating the gastrointestinal tract functions and other organs, which is involved in diverse physiological and pathological processes. This study demonstrated that Amuc_1100 could promote the expression of the 5-HT synthesis rate-limiting enzyme Tph1 in RIN-14B cells and reduce the expression of the serotonin reuptake transporter (SERT) in Caco-2 cells through direct interaction with TLR2, thereby improving 5-HT biosynthesis and extracellular availability. Using antibiotic-treated mice as animal models, we found that after gavage with A. muciniphila or Amuc_1100, Tph1 expression increased and SERT expression decreased in colon tissues. The 5-HT concentrations in colon tissues and blood were markedly elevated simultaneously. We also found that A. muciniphila or Amuc_1100 improved the gastrointestinal motility function and restored gut microbiota abundance and species diversity in antibiotic-treated mice. These results suggest that A. muciniphila can regulate the host intestinal 5-HT system via its outer membrane protein Amuc_1100 and TLR2. This mechanism represented an important approach through which A. muciniphila interacts with the host and further influences 5-HT-related physiological functions. These results advance the understanding of interplay mechanisms between the gut microbiota and the host, which could be the basis for new intervention strategies for related diseases.


Assuntos
Akkermansia/fisiologia , Proteínas da Membrana Bacteriana Externa/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestinos/efeitos dos fármacos , Serotonina/biossíntese , Receptor 2 Toll-Like/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/farmacologia , Células CACO-2 , Linhagem Celular , Células Enterocromafins/efeitos dos fármacos , Células Enterocromafins/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
20.
Pflugers Arch ; 473(6): 921-936, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33913004

RESUMO

The present study aims to investigate the roles of water intake in serotonin production and release in rat jejunum. We evaluated the changes in concentrations of serotonin in the portal vein and mesenteric lymph vessel induced by the intragastric administration of distilled water. The density of granules in enterochromaffin cells and the immunoreactivity of serotonin in the jejunal villi were investigated before and after water intake. The effects of intravenous administration of serotonin and/or ketanserin on mesenteric lymph flow and concentrations of albumin and IL-22 in the lymph were also addressed. Water intake increased serotonin concentration in the portal vein, but not in the mesenteric lymph vessel. The flux of serotonin through the portal vein was significantly larger than that through the mesenteric lymph vessel. Water intake decreased the density of granules in the enterochromaffin cells and increased the immunoreactivity of serotonin in the jejunal villi. The intravenous administration of serotonin increased significantly mesenteric lymph flow and the concentrations of albumin and IL-22; both were significantly reduced by the intravenous pretreatment with ketanserin. We showed that serotonin released from enterochromaffin cells by water intake was mainly transported through the portal vein. Additionally, serotonin in blood was found to increase mesenteric lymph formation with permeant albumin in the jejunal villi via the activation of 5-HT2 receptor.


Assuntos
Ingestão de Líquidos , Células Enterocromafins/metabolismo , Jejuno/metabolismo , Serotonina/metabolismo , Albuminas/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Interleucinas/sangue , Jejuno/citologia , Jejuno/fisiologia , Masculino , Veia Porta/fisiologia , Ratos , Ratos Sprague-Dawley , Serotonina/sangue , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA